JKAU: Eng. Sci., vol. 8, pp. 87-94 (1416 A.H./1996 A.D.)

On Multiserver Loss-Delay Queueing System with Priority
and No Passing

MADHU JAIN*, HARISH SHARMA®* and G.C. SHARMA™**
*Department of Mathematics, D.A.V. (P.G.) College, Dehra Dun, and
** Department of Mathematics, Institute of Basic Science, Khandari, Agra, India

ABSTRACT. This investigation deals with a multiserver queueing model in
which customers leave the system in the same chronological order in which
they arrive. The customers are assumed to arrive in Poisson fashion from
two infinite priority and ordinary sources and their service times are identi-
cal and exponentially distributed. The priority customers may wait but the
ordinary customers are lost if all servers are busy. We have derived analyt-
ical expressions for the expected waiting time of customers. Some measures
of system performance have been computed and graphs for expected wait-
ing time versus traffic intensity have also been provided.

1. Introduction

Several authors have studied the multiserver queueing systems in which the arriving
customers leave the system immediately after getting the required service. In some
practical queueing situations, the arriving customers may leave the system in order of
their arrival due to some physical restrictions. In this situation no customer can leave
system until all customers who have arrived chronologically earlier have also left the
system. Examples of such systems include narrow boat lock, a remote border cros-
sing with no parking space ... etc.

A multiserver queueing model under the restriction of departure in chronological
order, Poisson input, and exponentially distributed service time was studied by
Washburn!'!. Sharma et al.!”) extended the same problem for finite waiting space. In
many real life queueing problems, the arriving customers may be discouraged by a
long queue. Jain et al. BT considered the multiserver queue with no passing which also
includes discouragement.

In this paper, we consider a multiserver queueing system in which customers are
assumed to arrive from two infinite priority and ordinary sources in Poisson process.
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The priority customers are allowed to queue up, while the ordinary customers are
lost if all servers are busy. The service times of both type of customers are exponen-
tially distributed. There is a restriction on the departing customers. They can leave
the system in the same order in which they arrive. We derive analytical expressions
for the expected waiting time.

Our result generalizes those given by Washburn!!). This includes priority to mul-
tiserver loss-delay system with no passing which fulfils the needs of many practical
problems.

2. The Model and Analysis

We consider a queueing system in which a group of s servers handle two infinite
Poisson streams of priority and ordinary customers with rate A, and A,, respectively.
The priority customers may wait for service but ordinary customers are lost if all ser-
vers are busy. Both types of customers depart from the system in the same
chronological order in which they arrive, i.e., nth customer leave the system only
when all ( n — 1 ) customers arriving earlier have finished their service and have left
the system. The service times of both types of customers are exponentially distri-
buted with service rate u so that the cummulative distribution function (c.d.f.) of ser-
vice time is of the form

F(x)=(1-p)+p{l-exp(-px)} forx=0
0=p=1 s p >0
In case of p = 1, the c.d.f. of the service times reduces to exponential with service
rate p. Thus the arriving stream is composed of two types of customers. A proportion
( 1 -p ) of the customers are ordinary customers and have zero service time and

they are lost from the system. The remaining proportion p of customers are priority
customers and their service time distribution is exponentially distributed with rate w.

Let N, denotes the number of customers in the system at time ¢ and let
p, = Lim Prob. { N, =n}

t— x

We denote the traffic intensities for priority and ordinary customers by p; = A,/ p <'s
and p, = A, / u <s, respectively.

The steady-state probabilities for the loss delay system with priority is given by
(see Saaty 19611

( s - p (ot e)/nt g o))
s—pl+p1E5(p,+p2) N.(p + py) ’
P, = 3 > (1)
(s—p,)ES(p,+p2) (fl>n—s s < n
\s_p1+P|Es(Pl+Pz)‘ $ , J
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Where, N, (p)
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We notice that probability of all s servers busy is given by truncated Poisson distribu-
tion £, ( p ) which is also known as Erlang loss distribution.

Let E( W, ) and E ( W, ) be the expected waiting time until departure of cus-
tomer arriving from priority and ordinary sources, respectively.

We denote a, = f {1-(1-exp(-x)"1}.dx
0

So that @, —a, , = 1/n and a, =

] M:

j-1lforn =1
I

Following Washburn!"), the expressions for E ( W, )and E ( W, ) are given by

o n-s+
wE(W ) =a +n2:0(an+1—as).pn+"zzs%—l.pn (2)
s—1 x
and,p,E(Wz)=as_1+n§0(an—as_l).pn+ngsn_—§+—l.p" 3)

On substituting the values of p, from Equation (1) into Equations (2) and (3), we
have

_ ot (p+m) | (B o\’
”E(Wl)_as+Aan:0(an+l_as)_n!_+(?)(1—_§) (4)
and

_ (ptm) (B oy’
uE(Wz)—as_l+Asn§0(an—aS)—n!—+(?)(l—g_!) (%)
Where

A = (s_pl)
' S——p1+p]Es(p]+p2).N2(p1+p2)
and

(s-p) E(p + 1)
s-p T E (o topy)

Let D represents the dimensionless difference between the expected waiting times of
two types of customers. Then

D=pul[E(W,)-E(W,)]

B =

s
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s ! (o +p)

=1/s+ A, 20{(n+1)-1_s‘1}__

3. Some Particular Cases

3.1 Fors=1
For single server model, Equations (4) and (6) reduce to

pRE(W,)=1+B(1-p)"

where
B = (1_p1)E1(p1 +p2)
! lL-p +p E(p + p)
and D = 1
3.2 Fors =2

In this case Equations (4) and (6) become

wWE(W,)=%{3-A4,+ B,(1-p/2)"}

and
1+ A
D= —; 2
Where
A, = 2o
2-pp+ 0 E;(py +py) - Ny(py + py)
and
m==(2—m)Eﬂpl+%)
2-p +t pE(p; + )
3.3 Forp, =0

(6)

(7)

®)

€)

(10)

Its customers arrive from single source, i.e., all customers can wait, we have p, = 0.

In this case, Equations (4) and (5) give

for s =1
1 - p,

wE(W ) =
(W) ‘4+2p1—pf [
—— for s =2
\ 4—p1 J
(1 for s =1)

ME(Wz)z‘
2 >
for s =2
\2+p1 ]

(11)

(12)
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which also give the solution corresponding to model without loss as discussed by
Washburn!",

4. Numerical Results

In Table 1 and 2, we list for a range of p,, the expected waiting time of priority cus-
tomers for different values of p, ands = 1 and 2, respectively. Table 3 gives the differ-
ence D between the expected waiting time of priority and non-priority customers for
s =2

TABLE 1. w E( W, )fors=1.

P,
0 0.3 0.6 0.9
Py

0 1.000 1.231 1.375 1.494
0.1 1.111 1.342 1.486 1.585
0.2 1.250 1.481 1.625 1.724
0.3 1.429 1.659 1.804 1.902
0.4 1.667 1.897 2.041 2.140
0.5 2.000 2.231 2.375 2.474
0.6 2.500 2.731 2.875 2.974
0.7 3.333 3.564 3.708 3.807
0.8 5.000 5.231 5.375 5.474
0.9 10.000 10.231 10.375 10.474

TABLE 2. w E (W, )fors=2.

Py
0 0.6 1.2 1.8
Py
0 1.000 1.270 1.452 1.570
0.2 1.101 1.360 1.530 1.640
0.4 1.208 1.458 1.619 1.723
0.6 1.330 1.573 1.725 1.825
0.8 1.476 1.713 1.859 1.954
1.0 1.667 1.900 2.039 2.131
1.2 1.937 2.166 2.302 2.389
1.4 2.373 2.600 2.729 2.814
1.6 3.222 3.444 3.573 3.655
1.8 5.739 6.070 6.082 6.161

5. Discussion

The expected waiting time of priority customers versus traffic intensity p, when
p,=0.3,0.6,09fors = 1and p, = 0.6, 1.2, 1.8 for s = 2 are plotted by solid curves
in Fig. 1. The broken curves in Fig. 1 show the expected waiting time for system with-
out loss, i.e., for p, = 0. It can be noticed that the expected waiting time increases
with traffic intensity for both cases s = 1 and 2, and for different values of p,. By in-
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creasing servers the expected waiting time decreases which is natural. The expected
waiting time changes more rapidly with increase in traffic intensity. Fors = 1, 2 and
different values of p,, the expected waiting time for loss-delay system with priority is

TaBLE 3. Difference D, fors = 2.

P2
0 0.6 1.2 1.8

P
0 1.000 0.781 0.671 0.613
0.2 0.909 0.732 0.643 0.596
0.4 0.833 0.690 0.619 0.580
0.6 0.769 0.655 0.598 0.567
0.8 0.714 0.624 0.579 0.554
1.0 0.667 0.597 0.562 0.543
1.2 0.625 0.573 0.547 0.533
1.4 0.588 0.552 0.534 0.524
1.6 0.556 0.533 0.521 0.515
1.8 0.526 0.516 0.510 0.507
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greater than the one without loss.

Figure 2 illustrates the difference D versus traffic intensity p, fors = 1 and 2. For
system without loss, the difference D is shown by broken curves. It can be seen that
as traffic intensity p, increases, there is a decrease in the value of D for s = 2. While
fors = 1, both systems with and without loss reveal same constant difference D = 1.
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